盈彩网投资平台充值-互动百科
盈彩网投资平台APP2023-01-31 16:05

盈彩网投资平台充值

2023年的台湾,能否走出“涨”与“缺”?******

  2022年年初,台湾鸡蛋市场价格从每台斤(600克)30元(新台币,下同)左右,暴涨至70元都有人买。如今时已年尾,鸡蛋批发价仍高居每台斤50元左右。有业者表示,从11月开始调货,现在就算贴钱去调货都要排队。缺蛋危机又迫在眉睫。

  缺电、缺水、缺劳工、缺人才、“万物齐涨,唯有薪水不涨”……,“涨”与“缺”两个字,一笔一笔刻画着2022年台湾经济与民生的样貌。

“涨”字获选“台湾2022年度代表字”。联合新闻网图片

  

  12月初,“台湾2022年度代表字大选”票选结果公布,“涨”字在55个候选字中拔得头筹,获选为今年的年度代表字。“涨声响起,是庶民心中的痛”,有嘉宾在票选结果公布现场表示。

  有民众说,“现在物价都蛮涨的,大家都有感,买东西还有房价,都涨很快。”

  有专家分析指出,2022年,绝大多数受薪阶层可运用的实质薪水是缩水的。每家每户日常生活的必要开销,普遍多了10%到15%。而背着房贷的人,则因为升息,每月多缴至少上千元。

时已年尾,台湾鸡蛋批发价仍高居每台斤50元左右。缺蛋危机又迫在眉睫。台湾《工商时报》资料图片

  早在今年3月,就有网友好奇“台湾什么小吃涨价到大家已经不愿再买?”问题一经上网,引来大批网友留言,排名最前的是三样热门小吃:手摇饮料、鸡排与蚵仔煎。

  “手摇饮,回不去的15元奶茶”“手摇饮从珍奶25元到现在比便当贵,也不买了”“手摇饮,两年没碰了”“手摇饮,已经戒很久了”。

  “鸡排从35元到现在60元,已经不下手”“碳烤鸡排一个85元了”“昨天去夜市吃蚵仔煎,80块真的吓到”。

  除此之外,也有不少网友点名快餐、红豆饼、面包等美食,“唯一正解麦当劳”“红豆饼20元到30元一个真太贵了”“章鱼烧涨得太夸张”“我家附近的面线一小碗75元”“各种面包都变好贵”。

  据台当局相关部门公布,今年6月台湾消费者物价指数(CPI)年增率3.59%,达近十四年新高,且连续四个月超过3%,连十一个月超过2%的通胀警戒线。10月,民生物资涨幅扩大,面包涨8.76%、创十四年新高;卫生纸涨7%以上,为三年半最大涨幅。

  12月初公布的最新数据显示,11月消费者物价指数年增率2.35%,物价虽略回落,但仍是连续十六个月超过2%的通胀警戒线。

  

  今年3月3日上午9点07分,全台各地陆续传出停电灾情,549万户受影响,创下人为疏失停电最久纪录,民怨沸腾。这是台湾电力股份有限公司两年来第三度大停电,从2021年“513停电”影响400万户、“517停电”影响200万户,到此次“303大停电”,大小停电事故频传,进一步引起民众质疑台湾缺电。

  对此,台电再三保证,供电充足,停电与缺电无关,并为了杜绝大停电投入5645亿推动强化电网韧性建设计划。但观察台湾用电量,从2017年2172亿度到2021年2353亿度,年增4.68%,创下十一年新高。有专家指出,缺电的根本问题没有解决,就算有再优质电网,也一样无电可送。

  硅谷裁员中、台湾科技业却仍缺人才?据台媒报道,此前一场人才高峰论坛上,有业者集中火力抱怨大缺人才。

  据台当局相关部门统计,2021年台湾人口较前年减少18万人,人口连两年负增长。“少子化让大学在招生上十分困难,”有大学校长表示,尤其博士班学生更是严重出缺,将会导致台湾的研究能量严重不足。

  在企业界,不少中小科技企业抱怨台积电及联发科这两座“科技大厂”,抢走了不少人才。

  也有业界人士指出,台当局不致力解决人口危机,反而全力发展半导体产业,成立半导体学院,造成少部分人才薪资大涨,社会人力资源严重倾斜,这将导致未来台湾产业两极化和社会贫富不均更严重。

  不仅缺科技人才,普通劳工也很缺。台媒报道,随着疫情趋稳,商业活动恢复,台湾下半年服务业职缺上升,尤其住宿餐饮业、艺术及娱乐服务业、其他服务业(美容美发、按摩业)三个业别,职缺率皆升逾4%。

  媒体报道,缺工如今已成为台观光产业面对的最大难关。有饭店业者透露,人力缺到已经忍痛推掉上千桌的宴会订席。也有饭店经理表示,除了自己支援房务工作外,高阶、中阶主管也都需要到餐饮部门第一线去服务消费者。

饭店业者分析,造成饭店业缺工严重的关键原因,是疫情后经济市场转变,科技产业人力需求大增,挖走制造业人力,制造业再挖走旅宿业人才。台湾《经济日报》资料图片

  有歌词云,人生就是起起落落。台湾的2022,则是涨涨缺缺。2023已在拐角相望,2023年的台湾,能从“涨”与“缺”中走出吗?

  记者 舒颐

  • 诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******

      相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。

      你或身边人正在用的某些药物,很有可能就来自他们的贡献。

    诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

      2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。

      一、夏普莱斯:两次获得诺贝尔化学奖

      2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。

      今年,他第二次获奖的「点击化学」,同样与药物合成有关。

      1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。

    诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

      过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。

      虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。

      虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。

      有机催化是一个复杂的过程,涉及到诸多的步骤。

      任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。

      不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。

      为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。

      点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。

      点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。

      夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。

      大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。

      大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。

      大自然的一些催化过程,人类几乎是不可能完成的。

      一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。

       夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?

      大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。

      在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。

      其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。

      诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:

    诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

      夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。

      他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。

      「点击化学」的工作,建立在严格的实验标准上:

      反应必须是模块化,应用范围广泛

      具有非常高的产量

      仅生成无害的副产品

      反应有很强的立体选择性

      反应条件简单(理想情况下,应该对氧气和水不敏感)

      原料和试剂易于获得

      不使用溶剂或在良性溶剂中进行(最好是水),且容易移除

      可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定

      反应需高热力学驱动力(>84kJ/mol)

      符合原子经济

      夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。

      他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。

      二、梅尔达尔:筛选可用药物

      夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。

      他就是莫滕·梅尔达尔。

    诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

      梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。

      为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。

      他日积月累地不断筛选,意图筛选出可用的药物。

      在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。

      三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。

      2002年,梅尔达尔发表了相关论文。

      夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。

    诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

      三、贝尔托齐西:把点击化学运用在人体内

      不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。

    诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

      虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。

      诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。

      她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。

      这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。

      卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。

      20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。

      然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。

      当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。

      后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。

      由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。

      经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。

      巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。

      虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。

      就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。

      她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。

      大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。

    诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

      2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。

    诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

      贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。

      在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。

      目前该药物正在晚期癌症病人身上进行临床试验。

      不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。

    「  点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)

      参考

      https://www.nobelprize.org/prizes/chemistry/2001/press-release/

      Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.

      Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.

      Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.

      https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf

      https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf

      Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.

    中国网客户端

    国家重点新闻网站,9语种权威发布

    盈彩网投资平台地图